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Abstract

Many industrial applications generally use thin-body structures in their design. To calculate the radiated
noise from vibrated structure including thin bodies, the conventional boundary element method (BEM)
using the Helmholtz integral equation is not an effective resolution. Thus, many researchers have studied to
resolve the thin-body problem in various physical fields. No major study in the design sensitivity analysis
(DSA) fields for thin-body acoustics, however, has been reported.

A continuum-based shape DSA method is presented for the radiated noise from the thin-body. The
normal derivative integral equation is employed as an analysis formulation. And, for the acoustic shape
design sensitivity formulation, the equation is differentiated directly by using material derivative concept. To
solve the normal derivative integral equation, the normal velocities on the surface should be calculated. In
the acoustic shape sensitivity formulation, not only the normal velocities on the surface are required but also
derivative coefficients of the normal velocities (structural shape design sensitivity) are also required as the
input. Hence, the shape design sensitivity of structural velocities on the surface, with respect to the shape
change, should be calculated. In this research, the structural shape design sensitivities are also obtained by
using a continuum approach. And both a modified interpolation function and the Cauchy principle value are
used to regularize the singularities generated from the acoustic shape design sensitivity formulation.

A simple annular disk is considered as a numerical example to validate the accuracy and efficiency of the
shape design sensitivity equations derived in this research. The commercial BEM code, SYSNOISE, is
utilized to confirm the results of the developed in-house code based on a normal derivative integral
equation. To validate the calculated design sensitivity results, central finite difference method (FDM) is
employed. The error between FDM and the analytical result are less than 3%. This comparison
demonstrates that the proposed design sensitivities of the radiated pressure are very accurate.
r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thin-body structures are frequently used for the design of many industrial applications such as
fins or opened shells. To solve the acoustic problem including thin bodies, the conventional
boundary element method (BEM) using the Helmholtz integral equation is not an effective
resolution because the mesh on one side of a thin-body is too close to the mesh on the opposite
side. Although that difficulty can be overcome by using very fine meshes, the process requires too
much preprocessing and calculation time. Moreover, the nearly singular problem may occur in the
integral equation. Thus, many researchers have tried to solve the thin-body problem in various
physical fields including acoustics, electromagnetics and solid mechanics.
The multi-domain BEM [1] is the simplest way to handle the thin-body problem theoretically.

Even though the concept of multi-domain BEM is simple and straightforward, it is not very
efficient in computation when the imaginary interface surface is relatively large. In the normal
derivative integral equation, proposed by Wu and Wan [2], an imaginary interface surface is also
constructed like the multi-domain BEM. Furthermore, the Helmholtz integral equations and the
normal derivative integral equations are constructed for each subdomain including both a
structural surface and an imaginary surface. The integrals over the imaginary interface surface,
however, are simply canceled out due to continuity of pressure and velocity after combining the
Helmholtz integral equations with its normal derivative equation. Therefore, only the neutral
surface of the thin-body remains for the discretization. The normal derivative integral equation
approach, however, involves the evaluation of a hyper-singular integral in order of 1=r3: So the
regularization method, originally derived by Maue [3] and later by Mitzner [4], is utilized. The
evaluation of the hyper-singular integral can be also avoided by adopting a variational
formulation, proposed by Pierce et al. [5] The resulting coefficient matrix obtained from the
variational formulation is symmetric, but the computational cost is relatively high because a
double surface integral must be evaluated.
In the area of the design sensitivity analysis (DSA) for acoustics, not many studies have

been reported by using the BEM. Kane et al. [6] presented a shape design sensitivity
formulation method by using the implicit differentiation of the discretized Helmholtz
integral equation. Koopmann et al. [7] studied the sensitivity of radiated acoustic power to the
change of acoustic velocity for a given geometric configuration. Vlahopoulos [8] and Coytte
et al. [9] also studied the sizing DSA of acoustic radiation problems. Smith and Bernhard [10]
computed the sensitivity by differentiating the discretized boundary integral equation. The
derivative of the system matrix was approximated by adopting the finite difference concept.
Cunefare et al. [11,12] presented sizing acoustic DSA through chain-ruled derivatives from FEM
and BEM codes. Their research had focused on the best optimization formulation by comparing
the relative performance and results obtained through the use of several different objective
functions and constraints. Bonnet [13,14] derived continuum differentiation of the conventional
boundary integral equation. Wang and Lee [15] presented a sizing acoustic DSA method using a
continuum approach.
In this research, a continuum-based shape DSA method is presented for the radiated noise from

a thin-body. The normal derivative integral formulation is differentiated directly by using material
derivative concept to get the acoustic shape design sensitivity. And the shape design sensitivities of
structural velocities on the surface are also calculated with the continuum approach. As a
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numerical example, a simple disk is considered to validate the accuracy and efficiency of derived
shape design sensitivity equations in this research.

2. Acoustic shape design sensitivity formulation

2.1. Normal derivative integral equation

When a thin-body structure is vibrated with normal velocities vn; the radiated acoustic pressure
at a field point #x should be calculated by the normal derivative integral equation, proposed by Wu
and Wan [2], i.e., Z

S

qGð #x; #yÞ
qn

m dS ¼
Z

S

ðrG � nÞm dS ¼ pð #xÞ: ð1Þ

In Eq. (1), Gð #x; #yÞ is the Green function, which is the function of distance R between the points #x
and #y: Point #x is a field point located out of the surface and point #y is on the surface. Hence, the
integral in Eq. (1) should be calculated over the surface Sð #yÞ with a fixed field point #x: And n is the
normal vector of the surface, m is the difference between outside and inside pressure on the surface
and is called the jump of pressure or the double layer potential, m � pþ � p�:
When the field point #x is located on the surface, the normal derivative formulation is obtained

as [2] Z
S

fðn #x 
r #xGÞ � ðn
rmÞ þ k2ðn #x � nÞGmg dS ¼
qpð #xÞ
qn #x

¼ �jorvnð #xÞ: ð2Þ

In Eq. (2), n #x is the normal vector at the point #x; the operator r and r #x denote the gradient with
respect to the point #y and #x; respectively. Although the Green function is symmetric, Gð #x; #yÞ ¼
Gð #y; #xÞ; its gradients are opposite due to the derivative point,rG ¼ �r #xG; because the derivative
of distance R with respect to the point #y is opposite to the derivative of the distance with respect to
the point #x:
The radiated pressure pð #xÞ can be calculated from Eq. (1) with the value of double layer

potential m; which can be obtained from Eq. (2) with the known normal velocities vn on the surface
S: The numerical solution of Eqs. (1) and (2) can be obtained by discretizing the surface S of the
thin-body structure into a number of elements. Using interpolating shape function, Eq. (1) can be
discretized and rewritten in a matrix form

pð #xÞ ¼ Mel; ð3Þ

where pð #xÞ is the pressure at field points, l is a column vector composed by the values of double
layer potential on the discretized surface, andMe is the contribution matrix. If only one field point
is considered, the contribution matrix should be a row vector. To solve Eq. (1) or Eq. (3), m should
be calculated from Eq. (4), which is the discretized equation in a matrix form of Eq. (2)

�jorvn ¼ Ml; ð4Þ

where M and vn are the system matrix and the normal velocity vector, respectively.
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2.2. Material derivative for shape sensitivity

For the shape DSA, the shape of the domain is treated as the design variable. When a domain O
in one, two, or three dimensions, is changed with only one parameter t; the transformation
mapping is given by [16]

#xt � Tð #x; tÞ;

Ot � TðO; tÞ;

Gt � TðG; tÞ: ð5Þ

In Eq. (5), #x and #xt denote the points in the domain O and Ot; respectively. According to the
mapping, the initial point #x moves to #xt: The process of deforming from O to Ot by the mapping
of Eq. (5) may be viewed as a dynamic process of deforming a continuum with t playing the role
of time. Thinking of t as time, a design velocity field V can be defined as

V ð #xt; tÞ �
d #xt

dt
¼

dTð #x; tÞ
dt

¼
qTð #x; tÞ

qt
: ð6Þ

Design velocity field defined in Eq. (6) means the movement of the point in the domain with
respect to the time change. In the neighborhood of initial time t ¼ 0; assuming a certain regularity
hypothesis and ignoring higher order terms, T can be approximated by

Tð #x; tÞ ¼Tð #x; 0Þ þ t
qTðx; 0Þ

qt
þ Oðt2Þ

¼ #x þ tVð #x; 0Þ þ Oðt2Þ

E #x þ tVð #x; 0Þ

¼ #x þ tVð #xÞ: ð7Þ

Consider an arbitrary function f defined in the domain O: As Fig. 1 indicates, according to the
time t; a point #x and a function f should be changed to #xt and ft; respectively. The pointwise

Fig. 1. Material derivative for a function f :
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material derivative of the function f ; if it exists, is defined as

’fð #xÞ �
d

dt
ftð #x þ tV ð #xÞÞ

����
t¼0

¼ lim
t-0

ftð #x þ tVð #xÞÞ � f ð #xÞ
t

¼ lim
t-0

ðftð #xtÞ � ftð #xÞÞ þ ðftð #xÞ � f ð #xÞÞ
t

¼ lim
t-0

rf T
t tV þ ðftð #xÞ � f ð #xÞÞ

t
: ð8Þ

If ft has a regular extension to a neighborhood of the closed set Ot; then rf T
t tV ð #xÞDrf TtV ð #xÞ

because of very small t and Eq. (8) is rewritten as Eq. (9) with definition of Eq. (10)

’fð #xÞ ¼ f 0ð #xÞ þ rf TV ð #xÞ; ð9Þ

f 0ð #xÞ �
q
qt

ftð #xÞ
����
t¼0

¼ lim
t-0

ftð #xÞ � f ð #xÞ
t

: ð10Þ

rf means a gradient vector, which is a derivative in the three co-ordinate directions. Both ’f and f 0

are the kinds of slopes for the function variation. By the definition of Eqs. (8)–(10), the pointwise
material derivative ’f is a slope of function change from ftð #xtÞ to f ð #xÞ owing to the time change.
And f 0 denotes the partial derivative of function f at the same point #x; it means a slope of function
change from ftð #xÞ to f ð #xÞ:

2.3. Acoustic shape design sensitivity formulation

Let a general functional c be defined as an integral over surface S with the direction vectors
shown in Fig. 2

C ¼
Z

St

gtð #ytÞ dSt: ð11Þ

Fig. 2. Direction vectors for the surface (n—surface normal, Z—boundary tangent, and n—boundary normal).
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The material derivative of c is [14,16]

C0 ¼
Z

S

½ ’gð #yÞ þ gð #yÞdivs V� dS

¼
Z

S

½g0ð #yÞ þ ðrgð #yÞ � nþ Hgð #yÞÞðV � nÞ� dS þ
Z

C

gð #yÞðV � mÞ ds: ð12Þ

In Eq. (12), H� div n and V is the design velocity field of the shape change. Physically, the
material derivative c0 means the change of the general functional c per unit change of the shape
design variable. Since the final goal of this research is the shape DSA of the radiated pressure at a
field point #x; the objective function of DSA is defined as

C ¼ pð #xÞ ¼
Z

S

ðrG � nÞmð #yÞ dS: ð13Þ

To get the material derivative of c or pð #xÞ; treat ðrG � nÞm as a general function g in Eq. (11). Then
the partial derivative of g is

g0 ¼ ½ðrG � nÞm�0 ¼ ðrG � nÞ0mþ ðrG � nÞm0: ð14Þ

Since the Green function and the normal vector are dependent on the geometry of the surface and
its applied frequencies only, ðrG � nÞ0 should be zero at same point. Accordingly, g0 can be
simplified as

g0 ¼ ðrG � nÞm0: ð15Þ

The rg can be derived as

rg ¼ rðrG � nÞmþ ðrG � nÞrm; ð16Þ

rðrG � nÞ ¼ ðn � rÞrG þ ðrG � rÞnþ n
 ðr 
rGÞ þ rG 
 ðr 
 nÞ

¼ n � rðrGÞ þ rG � rnþ n
 ðr 
rGÞ þ rG 
 ðr
 nÞ: ð17Þ

In Eq. (17), r
rG ¼ 0: Consequently, Eq. (16) can be rewritten as

rg ¼ ½n �DrG þrG �Dn þrG 
 R�mþ ðrG � nÞrm: ð18Þ

In Eq. (18), R is the curl of normal vector n and D is the dyadic, which is a gradient of a vector. In
this paper, Dn is a gradient of the vector n and DrG is a gradient of the gradient of scalar function
G: By substitution of Eqs. (15) and (18) into Eq. (12), the material derivative of Eq. (13) is
derived as

’pð #xÞ ¼
Z

S

fðrG � nÞm0 þ ½ðn �DrG þrG �Dn þrG 
 RÞmþ ðrG � nÞrm� � ngðV � nÞ dS

þ
Z

S

f½HðrG � nÞðV � nÞ þ ðrG � nÞdiv V �mg dS: ð19Þ

To get the shape design sensitivity of the pressure, ’pð #xÞ; the two variables m0 and m must be
known. The variable m can be easily obtained from Eq. (2) with the known velocity on the surface
vn: To obtain the variable m0; however, an additional equation is needed. If a general function f is
defined as Eq. (20), then the material derivative of Eqs. (2) can be denoted as Eq. (21)
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using Eq. (12)

f ð #yÞ � ðn #x 
r #xGÞ � ðn
rmð #yÞÞ þ k2ðn #x � nÞGmð #yÞ; ð20Þ

�jor’vnð #xÞ ¼
Z

S

½f 0ð #yÞ þ ðrf ð #yÞ � nþ Hf ð #yÞÞðV � nÞ� dS þ
Z

C

f ð #yÞðV � mÞ ds: ð21Þ

Like the derivation of Eq. (19), f 0 and rf are needed for Eq. (21). The f 0 is

f 0 ¼ ðn #x 
r #xGÞ � ðn
rm0Þ þ k2ðn #x � nÞGm0: ð22Þ

Using the symmetric condition of the Green function rG ¼ �r #xG;

f 0 ¼ k2ðn #x � nÞGm0 � ðn #x 
rGÞ � ðn
rm0Þ: ð23Þ

Since the Green function should satisfy the wave equation, r2G ¼ k2G � d: Using this relation,
the rf is derived as

rf ¼ðn
rmÞ �DrG
n #x
þ ðrG 
 n #xÞ �Dn
rm

þ ðn
rmÞ 
 ½rGH #x �rG �Dn #x
þ n #x �DrG þ n #xðk2G � dÞ�

þ ðn #x 
rGÞ 
 ½rmH �rm �Dn þ n �Drm þ nðk2mÞ�

þ k2½n �Dn #x
þ n #x �Dn þ n
 R #x þ n #x 
 R�Gm

þ k2ðn #x � nÞrGmþ k2ðn #x � nÞGrm: ð24Þ

In Eq. (24), H #x and R #x denote the divergence and curl of the normal vector at the point #x;
respectively. And the d means the Dirac delta which has the value of one at the point #x and zero
for other points. Using Eqs. (23) and (24), Eq. (21) can be expanded as

� jor’vnð #xÞ

¼
Z

S

½k2ðn #x � nÞGm0 � ðn #x 
rGÞ � ðn
rm0Þ� dS

þ
Z

S

f½ðn
rmÞ �DrG
n #x
þ ðrG 
 n #xÞ �Dn
rm� � ngðV � nÞ dS

þ
Z

S

f½ðn
rmÞ 
 ðrGH #x �rG �Dn #x
þ n #x �DrG þ n #xðk2G � dÞÞ� � ngðV � nÞ dS

þ
Z

S

f½ðn #x 
rGÞ 
 ðrmH �rm �Dn þ n �Drm þ nðk2mÞÞ� � ngðV � nÞ dS

þ
Z

S

f½k2ðn �Dn #x
þ n #x �Dn þ n
 R #x þ n #x 
 RÞGm� � ngðV � nÞ dS

þ
Z

S

f½k2ðn #x � nÞrGmþ k2ðn #x � nÞGrm� � ngðV � nÞ dS

þ
Z

S

H½k2ðn #x � nÞGm� ðn #x 
rGÞ � ðn
rmÞ�ðV � nÞ dS

þ
Z

S

½k2ðn #x � nÞGm� ðn #x 
rGÞ � ðn
rmÞ�ðdivVÞ dS: ð25Þ
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Since the single layer potential, which is the difference of the normal velocities on the outside and
inside surface, s � vþn � v�n ; is zero for a thin-body problem, rmð #xÞ � n #x ¼ 0: Therefore, the
integration of the Dirac delta in Eq. (25) becomes zero.

� jor’vnð #xÞ

¼
Z

S

½k2ðn #x � nÞGm0 � ðn #x 
rGÞ � ðn
rm0Þ� dS

þ
Z

S

f½ðn
rmÞ �DrG
n #x
þ ðrG 
 n #xÞ �Dn
rm� � ngðV � nÞ dS

þ
Z

S

f½ðn
rmÞ 
 ðrGH #x �rG �Dn #x
þ n #x �DrG þ k2Gn #xÞ� � ngðV � nÞ dS

þ
Z

S

f½ðn #x 
rGÞ 
 ðrmH �rm �Dn þ n �Drm þ k2mnÞ� � ngðV � nÞ dS

þ
Z

S

f½k2ðn �Dn #x
þ n #x �Dn þ n
 R #x þ n #x 
 RÞGm� � ngðV � nÞ dS

þ
Z

S

f½k2ðn #x � nÞrGmþ k2ðn #x � nÞGrm� � ngðV � nÞ dS

þ
Z

S

H½k2ðn #x � nÞGm� ðn #x 
rGÞ � ðn
rmÞ�ðV � nÞ dS

þ
Z

S

½k2ðn #x � nÞGm� ðn #x 
rGÞ � ðn
rmÞ�ðdivVÞ dS: ð26Þ

In Eq. (19), the field point #x is located out of the surface and the point #y is located on the
surface. Therefore, the point #x is not moving when the shape of the structure is changed. In
Eq. (26), however, not only #y but also #x is located on the surface. So the point #x is also moved
when the shape is changed. It means that the design velocity field V has to be different for the
Eqs. (19) and (26).

V ¼
Vð #yÞ for Eq: ð19Þ;

Vð #yÞ � Vð #xÞ for Eq: ð26Þ:

(
ð27Þ

Eqs. (19) and (26) can be also discretized in matrix forms

’pð #xÞ ¼ Mel
0 þMD

e l; ð28Þ

�jor’vn ¼ Ml0 þMDl: ð29Þ

In Eqs. (28) and (29), MD
e and MD are material derivatives of the contribution and the system

matrices, respectively. Since Eqs. (28) and (29) are discretized after differentiation, the solution of
those are more accurate than the sensitivity result of directly differentiated equation of discretized
formulation. In Eq. (28), the unknown variable l can be obtained from Eq. (4) with the normal
velocities of the structure, vn; and l0 can be calculated from Eq. (29) with the sensitivities of
normal vectors, ’vn: The structural shape design sensitivity ’vn in Eq. (29) means the change of
normal velocities per unit change of the shape design variable. Therefore, the shape design
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sensitivity of the radiated noise at field points can be calculated by solving Eqs. (4), (28) and (29)
with the normal velocity and its structural shape design sensitivities at each node point. These
procedures are shown in Fig. 3.
When the point #x and #y are located on the same surface, the boundary integral equation has a

singularity problem. There is no singularity problem in Eqs. (1) and (19) because the point #x is
located out of the surface. Since the field point #x in Eq. (2) is located on the surface; however,
Eq. (2) has a Oð1=r2Þ singularity. The second order singularity can be solved by adopting the
Cauchy principle value (CPV) idea. In Eq. (26), the sensitivity formulations of Eq. (2), the third
order singularity is caused by a dyadic of the gradient of the Green function. Consequently, the
other regularization is required. Fortunately, the dyadic in Eq. (26) must be multiplied by a design
velocity field and the design velocity field in Eq. (26) is the difference of the values at points #x and
#y: Bonnet [14] proposed the modified interpolation function based on the introduction of polar co-
ordinates in the parent element. By using the modified interpolation function, the third order
singularity can be reduced to the second order. Accordingly, using CPV, the integrals of all
acoustic equations derived in this research can be obtained.

3. Structural shape design sensitivity formulation

As shown in Fig. 3, sensitivity coefficients of the normal velocities on the surface are required as
the input of acoustic shape design sensitivity formulation. The variational equation of a dynamic
frequency response problem can be written for all %zAZ as

bOðz; %zÞ �
Z
O

f ðz; %zÞ dO ¼ �o2rdOðz; %zÞ þ iocOðz; %zÞ þ aOðz; %zÞ ¼ lOð%zÞ: ð30Þ

In Eq. (30), aOðz; %zÞ is the strain energy bilinear form, cOðz; %zÞ is the bilinear form due to the
damping of the structure, dOðz; %zÞ is the mass effects bilinear form and lOð%zÞ is the load linear form.

Fig. 3. Calculation procedures of acoustic analysis and sensitivity analyses.
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The first variation of Eq. (30) is [16]

½bOðz; %zÞ�0 ¼ bOð’z; %zÞ þ bOðz; ’%zÞ � bOðrz � V; %zÞ � bOðz;r%z � VÞ þ b0Oðz; %zÞ

¼ l0V ð%zÞ ¼ ½lOð%zÞ�0; ð31Þ

b0
Oðz; %zÞ ¼

Z Z
O
div½f ðz; %zÞVO� dO; ð32Þ

where f ðz; %zÞ is a bilinear mapping.
The differentials b0

V ðz; %zÞ and l0V ð%zÞ in Eq. (31) denote the explicit dependence of energy and load
forms due to the shape and orientation changes. In Eq. (31), b0

V ðz; %zÞ is defined as

b0
V ðz; %zÞ ¼ �bOðrz � V; %zÞ � bOðz;r%z � VÞ þ b0Oðz; %zÞ: ð33Þ

From Eq. (31) and using the fact that ’%zAZ and bOðz; ’%zÞ ¼ lOð’%zÞ; the first variation of Eq. (30) is

bOð’z; %zÞ ¼ l0V ð%zÞ � b0V ðz; %zÞ for all %zAZ: ð34Þ

Next, consider a general functional that may be written in domain integral form as

C0
t ¼

Z
Ot

gðzt;rztÞ dOt; ð35Þ

where rz ¼ ½rz1rz2rz3�T; and the function g is continuously differentiable with respect to its
arguments. The variation of the functional of Eq. (35) is [16]

C0 ¼
Z
O
½gzz

0 þ grzrz0 þ ðrg � VÞ þ g divV� dO; ð36Þ

where, gz is a derivative of g with respect to z and grz is a derivative of g with respect to the
gradient of z:
Eq. (36) is rewritten as

C0 ¼
Z
O
½gz ’z þ grzr’z � gzðrz � VÞ � grzrðrz � VÞ þ ðrg � VÞ þ g divV� dO; ð37Þ

where ’z ¼ z0 þ ðrz � VÞ and r’z ¼ rz0 þ rðrz � VÞ:
The objective here is to obtain an explicit expression for C0 in terms of the velocity field, which

requires rewriting the first two terms of Eq. (37) explicitly in terms of velocity, i.e., eliminating ’z:
To eliminate ’z; an adjoint equation is introduced by replacing ’zAZ in Eq. (37) by a virtual
displacement %lAZ and equating the sum of terms involving %l to the bilinear form

bOðl; %lÞ ¼
Z
O
½gz

%lþ grzr%l� dO for all %lAZ: ð38Þ

Using an adjoint approach, Eq. (37) becomes

C0 ¼ l0V ðlÞ � b0
V ðz; lÞ �

Z
O
½gzðrz � VÞ þ grzrðrz � VÞ þ ðrg � VÞ þ g divV� dO: ð39Þ

Therefore, the right-hand can be evaluated once the state z and the adjoint variable l are
determined as the solutions of Eqs. (30) and (38).
To calculate the structural shape design sensitivities ’vn in Eq. (29), first consider the structural

displacement at a point #x in the domain O by the structure under harmonic excitation as a general
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functional

C ¼
Z
O
dðx � #xÞzi dO; i ¼ 1; 2; 3: ð40Þ

Since Eq. (40) is a function of z; the design sensitivity expression of Eq. (39) can be rewritten as

C0 ¼ l0V ðlÞ � b0V ðz; lÞ �
Z
O
½gzðrz � VÞ þ ðrg � VÞ þ g divV� dO: ð41Þ

And the adjoint equation, Eq. (38), can be obtained as

bOðl; %lÞ ¼
Z
O

q
qz
½dðx � #xÞ�%l dO ¼

Z
O
dðx � #xÞ%l dO: ð42Þ

With the original displacement z obtained from Eq. (30) and adjoint displacement l obtained
from Eq. (42), the shape design sensitivity of structural displacement can be calculated from
Eq. (41). The structural shape design sensitivities of the normal velocity ’vn in Eq. (29) can be
obtained by multiplying a scale factor to the displacement sensitivity result.

4. Numerical example

A simple annular disk is considered as a numerical example to validate the accuracy of the
shape design sensitivity formulations. As shown in Fig. 4, this example is motivated by the noise
of hard disk drive. Its inner boundary circle is clamped with radius ‘a’ and outer boundary circle is
considered as a free end with radius ‘b’. The number of elements for its numerical model
was decided on 96 after the element convergence test by using the structural modes, as shown in
Table 1.

Fig. 4. Annular disk model: (a) schematic diagram and (b) FE and BE models.
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When the external forces are applied to the clamped edge, the structural normal velocities
on the surface are calculated by MSC/NASTRAN. And using these normal velocities,
the frequency responses of the acoustic pressure at (0; 0; z) point, which is above the center
of the thin-body disk, are calculated. The analysis results of the normal derivative integral
equation are shown in Fig. 5. For the accurate sensitivity results, the analysis results should be
accurate. In this paper, the commercial code SYSNOISE, which uses the indirect variational
formulation for a thin-body, is used for the comparison of the results. As shown in Fig. 5, the
analysis using normal derivative integral formulation is well matched with SYSNOISE. The
analysis result shows the first peak is located at 668Hz. It is the second mode of the structure in
Table 1.
Since the goal of this research is not an optimization but a DSA, only the accuracy of the

sensitivity coefficient is validated. For the sensitivity analysis, 668Hz is decided as the target
frequency and two shape design variables shown in Fig. 6 are selected. The positive directions of

Table 1

Element convergence test (Hz)

Number of elements Experiment

48 96 144

First mode (0,2)a 359.0 419.5 425.6 423.9

Second mode (0,0) 426.8 668.2 705.2 656.9

Third mode (0,3) 807.6 1010.6 1035.9 1056.9

a (m; n)=number of nodal circles, number of nodal diameters.

Fig. 5. Acoustic analysis results for the annular disk (—, indirect variational method by SYSNOISE; ’, normal

derivative integral equation).
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both design changes are set to reduce the surface area. For the shape DSA, three input variables
are needed. First one is the normal velocity of the surface that is a result of the structural analysis.
Moreover, the second one is the double layer potential that is calculated from Eq. (2) using the
normal velocity. Fig. 7 shows the normal velocity and the double layer potential of the surface.
Since the system is axisymmetric, only one side of disk section is plotted in Fig. 7. For the acoustic
DSA, the structural sensitivity of the normal velocity must be calculated from the derived
formulation in Section 3. This structural sensitivity results are shown in Fig. 8. The positive
sensitivity means if the shape is changed along positive design variable direction, the performance
should be increased. For instance, when the inner diameter of the disk is increased, the velocity at
the inner circle should be increased and the velocity at the outer circle should be decreased. As
shown in Fig. 8, the sensitivity results of the two design variables have the opposite tendency for
each other.
Finally, the shape design sensitivity of the acoustic pressure at a field point is calculated. To

verify the calculated design sensitivity results, central finite difference method obtained by
SYSNOISE is employed in Table 2. As shown in Table 2, the sensitivity result is positive for the
design variable 1 and negative for the design variable 2. Moreover, their magnitudes differ greatly
from the order. In general, the acoustic pressure generated from the structural vibration is
proportional to the product of velocity and surface area. For the design variable 1, although the
positive part looks bigger than the negative part in Fig. 8, the integration of the changed velocities
over the surface has a minus value because the inner part of the circular disk has smaller area than
outer part. The final acoustic design sensitivity, however, is positive. It means that the sensitivity
of the pressure is greatly influenced by the distance between an observing point and the source
point for this example at least. When the design variable 1 is changed positively, the velocities of
the surface near the observing point are increased and the pressure at the observing point is
increased even though some velocities on the far points are decreased. For the design variable 2,
the opposite results occur. Furthermore, the difference between the magnitudes of the structural
sensitivities is also amplified by the effect of acoustic calculation. Table 2 also shows the design
sensitivities of the radiated pressure with respect to both design variables 1 and 2 are very
accurate.

Fig. 6. Design variables of shape change (DV1 and DV2).
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5. Conclusion

The design sensitivity formulations of the radiated noise from thin-body with respect to
the shape change are successfully derived and implemented. Using a simple model, the annular
disk, the accuracy of calculated sensitivity results are validated. Nevertheless, there is a limitation
of this approach. Derived equation works only to examples with the in-plane or orientation
change of the smooth surface. Further research is required because the Cauchy principle value
integral is distorted by a shape perturbation when the curvature of the surface is rapidly changed.
Hence, the more general regularized method should be considered to reduce the order of
singularity later on.

Fig. 7. Results of the structural and acoustic analysis: (a) structural velocity of the disk at 668Hz and (b) double layer

potential on the disk at 668Hz.
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